

Fresh look at S“ azzy
Fundamentals Sl snigpets

New features
Why Refresh Time poor

Flllldamellta|8? It's not broken

Terminology reminder

SAL
Structure

Join

Subqueries Ontions

SAL
Structure

Join

Subqueries Ontions

Structure

Projections

SELECT e.first name, e.last name, e.commission pct, e.salary,
e.salary * {e.commission_pct/) as commlisslion

FROM employees e;

I L I)

Filters/Predicates

SELECT e.first name, e.last name

FROM employees e
WHERE e.commission pct IS NOT NULL;

bt [

==

regates
SELECT e.department id, avg(e.salary)

FROM employees e
GROUP BY e.department id;

W M

Structure
Joins

SELECT e.department id, d.department name, e.employee id
FROM employees e, departments d
WHERE e.department id = d.department id

I S T

ANSI Join

SELECT e.department id, d.department name, e.employee id
FROM employees e

INNER JOIN departments d
ON e.department id = d.department id

=) o =

SAL
Structure

Join

Subqueries Ontions

Subqueries
What.: A query within a query
Benefits: Shifts Complexity
Where: ~ Most common in WHERE

Nested Subqueries

1l SELECT e.employee 1d, e.first name, e.last name
FROM employees e

WHERE e.department 1d =
T (SELECT department 1id

v

[

FROM departments
WHERE department name = 'Finance');

[T 0 (Y N

oy N ol Lo D

-]

2 WD D

|_'.

K

Subqueries

Multiple Nested Subqueries

-— Find employees with a salary higher than the finance average
SELECT e.employee 1d, e.first name, e.last name
FROM employees e
WHERE e.salary >
= (SELECT avg(e.salary)
FROM employees e
WHERE e.department id =
= (SELECT department id
FROM departments
- WHERE department name = "Finance'));

Subqueries

Join on multiple columns

N

[Y S

.___J G\I

—— Join on multiple columns
SELECT e.employee id, e.first name, e.last name, e.hire date
FROM employees e
WHERE (hire date, last name) =
(SELECT distinct hire date, last name
FROM employees
WHERE hire date = tq_date('24fHEEf:6','DDEHCIEEY'));

Subqueries |
Correlated Subquery

—— Return the underpaid staff

R

SELECT e.employee id, e.first name, e.last name, e.salary
FROM employees e
TWHERE e.salary < (SELECT awvg(salarvy)

[Y =

FROM employees
WHERE department id = e.department id) ;

()

Subqueries

Location: Select

—— Scalar Subguery - Returns only 1 result
SELECT d.department name,
(SELECT count (*)
T FROM employees e
WHERE e.department i1d = d.department i1d) num emps
FROM departments d;

(i TR Y SN S T L I)

Scalar Subquery Caching feature

—— Cache

SELECT count (*)

FROM employees e

WHERE e.department 1d = :department 1id;

(Y S T T e

Subqueries
Location; From - Inline View

SELECT e.employee id, e.first name, e.last name,
e.department id, e.salary, sal avg.avg salary
FROM employees e,
T (SELECT avg(salary) avg salary
FROM employees) sal avg;

N o= W b =

o I T (Y =S ' B s T

)

L

Subqueries
Location: With - Subquery Factoring

—— Return the underpaid staftf

WITH dep avg AS (SELECT eZ.department id, avg(eZ.salary) avg sal
T FROM employees e’

GROUP BY eZ.department id)

SELECT e.employee id, e.first name, e.last name, e.salary

FROM employees e, dep avg d

WHERE e.salary < d.avg sal

AND e.department id = d.department id;

Benefits: Optimiser may materialise the results into a global temp table

0 | SELECT STATEMENT |
1 | TEMP TABLE TRANSFORMATION |
2 | LOAD AS SELECT | SYS TEMP OFD9D66l1E AB3B69

WITH 4able name

AS (SELECT

FROM)
SELECT (SELECT
FROM)eol name

FROM

(SELECT

FROM) table_name
WHERE

(SELECT

FROM)

Subquery Factoring

Scalar Subquery

Inline View

Nested Subquery

SAL
Structure

Join

Subqueries Ontions

|_'- l_'- l_'. l_'. l_'. l_'.

= g B3 =

.___J G\I

L0 Y S T e TR e B s S Y O i

Joins

—— Oracle Joins
SELECT e.first name,
e.last name,
d.department name
FROM employees e,
departments d
WHERE e.department id = d.department id;

—— ANST Joins
SELECT e.first name,
e.last name,
d.department name
FROM employees e
JOIN departments d
ON e.department id = d.department id;

Antsy ANSI?

Agitated Impatient Restless

Verbose
Bugs
Why change?
Maintenance nightmare
Too much of a fundamental change

Not supported inside Oracle Forms

No Join

Cartesian Product
1 —— Cartesian Product
2 WITH
3 E au states AS (SELECT code value state abv
- FROM ref codes
R WHERE code type = '"AU STATES'),

genders AS (SELECT code desc gender
FROM ref codes
- WHERE code type = 'GENDEERS')
SELECT state abv, gender
10 FROM au states,
11 genders

1l 3
{1

) WD 00—

No Join

Cartesian Product - ANSI Cross Join

1 —— ANSI Cross Join

2 WITH

3 H au states AS (SELECT code value state abv

- FROM ref codes

R WHERE code type = '"AU STATES'),
© H genders AS (SELECT code desc gender

7 FROM ref codes

- WHERE code type = 'GENDERS')
SELECT state abv, gender
FROM au states CROSS JOIN genders;

O W0 M

l_'.

ANSI Natural Join

—— Oracle JOIN
SELECT r.reglon name, Cc.country name

FROM countries c,

LI

e

reglions r
WHERE r.region id = c.reglion id;

[

L
I

6

7 —— ANSI Natural join

Inner Join - Using

1 —— ANSI Regular Join 'USING'
2 SELECT r.region name, c.country name
3 FROM countries c

4 INNER JOIN regions r
USING (region_ id) ;

[

INNER is optional

SELECT e.employee id, j.job title,
m.first name manager first name

o= o B =

FROM employees e
JOIN employees m
ON (e.manager id = m.employee 1id)
6 JOIN jobs j USING (job id)

7 ORDER BY employee id;

Pretty Bad ldea

ORA-00918: column ambiguously defined
00918, 00000 - “column ambiguously defined”
ause:

*Action:

Error at Line: 94 Column: 34

Inner Join - On

SELECT r.region name, c.country name
FROM countries c

JOIN regions r

ON r.region id = c.region id;

a Mo B2

.
e

oy N o L D=

Outer Join

—— QOracle SQL Outer Join
SELECT e.last name,
d.department name

FROM employees e,

departments d

e.department id = d.department id(+);

/@)@

(+)=>0 +=>

ENTIT

(Employees)

Op+ional

O_|_

ENTITY

(Departments)

[

[Y S

Left Outer ANSI Join

SELECT e.last name,

FROM

d.department name

employees e

LEFT OUTER JOIN departments d

ON e.department id = d.department id;

Irreplaceable Lyrics

“To the left, to the left
Everything you own in the box to the left
- Beyonce Knowles

oy N = g B

(s TR i Y S 5 O % T =

Right Outer ANSI Join

—— QOracle SQL Outer Join
SELECT e.last name,
d.department name
FROM employees e,
departments d
WHERE e.department id(+) = d.department id;

—— ANSI Right QOuter Join
SELECT e.last name,
d.department name
FROM employees e
RIGHT OUTER JOIN departments d
ON e.department id = d.department id;

(o TR i Y S A O ' T

Full Quter Join ANSI Only

—— ANSI Full Outer Join
SELECT e.last name,

FROM

d.department name

employees e

FULL OUTER JOIN departments d

ON e.department id = d.department id;

Partitioned Outer Join ANSI Only

Elegant solution for data densification

When the absence of data is meaningful

Example: Sales reporting

{: ORDER_DATE i+ car {t QUANTITY_SOLD
120151101 FORD 30
220151102 FORD 89
320151103 FORD 100
420151104 FORD 89
520151105 FORD g2
€20151101 HOLDEN g1
720151102 HOLDEN 126
820151103 HOLDEN 36
$20151104 HOLDEN 121
1020151105 HOLDEN 713
120151101 MAZDA 9
1220151102 MAZDA 11

o -] Oy N = W N

25

27
28
29
30
31

|

Partitioned Outer Join ANSI Only

—— Partitioned Outer Join

WITH

week days AS
(SELECT TO CHAR((DATE '2015-11-01"+ ROWNUM-1),
FROM dual
CONNECT BY ROWNUM <= 5),
sales AS
(SELECT TO CHAR((DATE '2015-11-01"+ ROWNUM-1),

'"YYYYMMDD'") AS weekday

'"YYYYMMDD') order date,

SELECT s.car, wd.weekday, NVL(SUM(S.quantity_Sold),3) AS total sales

FROM

GROUP
ORDER

week days wd

LEFT OUTER JOIN

sales s PARTITION BY (s.car)
ON (s.order date = wd.weekday)
BY s.car, wd.weekday

BY s.car, wd.weekday;

Partitioned Outer Join ANSI Only

it caR it WEEKDAY it TOTAL_SALES
1 FORD 20151101 32
2 FORD 20151102 21
3 FORD 20151103 33
4 FORD 20151104 57
> FORD 20151105 5
s HOLDEN 20151101 107
7HOLDEN 20151102 135
8 HOLDEN 20151103 40
° HOLDEN 20151104 101
0 HOLDEN 20151105 100
uUMAZDA 20151101 32
RMAZDA 20151102 60
BMAZDA 20151103 0
M“MAZDA 20151104 0

5MAZDA 20151105 0

